Product description
Find: a) (λ · a + μ · b) · (ν · a + τ · b); b) the projection (ν · a + τ · b) on b; c) cos (a + τb).
Given: α = -2; β = 3; γ = 4; δ = -1; k = 1; ℓ = 3; φ = π; λ = 3; μ = 2; ν = -2; τ = 4.
No.2 According to the coordinates of points A; B and C for the indicated vectors find: a) the module of the vector a;
b) the scalar product of the vectors a and b; c) the projection of the vector c onto the vector d; d) coordinates
points M; dividing the segment ℓ with respect to α :.
Given: А( 4 ; 3 ; – 2 ); В – 3 ; –1; 4 ); C( 2 ; 2 ; 1 ); ...
No.3 Prove that the vectors a; b; c form a basis and find the coordinates of the vector d in this basis.
Given: a(2;–1;4); b(–3;0;–2 ); c(4;5;–3 ); d(0;11;–14).
Main features
- Content type File
- Content description 119,41 kB
- Added to the site 09.04.2024
Reviews
No reviews yet
Cumulative discount
20 $ | the discount is 10% |
10 $ | the discount is 5% |
5 $ | the discount is 3% |
Amount of purchases from the seller: $
Your discount: %
Cumulative discount
20 $ | the discount is 10% |
10 $ | the discount is 5% |
5 $ | the discount is 3% |
Amount of purchases from the seller: $
Your discount: %