Prokofiev VL - the solution of the entire version 06 in

  • USD
    • RUB
    • USD
    • EUR
Affiliates: 0,03 $how to earn
i agree with "Terms for Customers"
Sold: 13 last one 17.06.2023
Refunds: 0

Uploaded: 17.05.2017
Content: 41008153238737.rar 100,11 kB
Loyalty discount! If the amount of your purchases from the seller Михаил_Перович is more than:
200 $the discount is15%
show all discounts
1 $the discount is1%
If you want to know your discount rate, please provide your email:
Михаил_Перович seller information
offlineAsk a question

Seller will give you a gift certificate in the amount of 0.04 $ for a positive review

Product description


Task 2.6
Two parallel planes of the same name are charged with a surface charge density of 2 and 4 nC / m2.
Determine the field strength:
A) between planes;
B) outside the planes.

Task 2.16
The charge of 1 nC was attracted to an infinite plane, uniformly charged with the surface density
0.2 μC / m2. At what distance from the plane was the charge, if the work of the field forces along its
The movement is 1 μJ?
Task 2.26
The flat air condenser is charged to a potential difference of 300 V. The area of ​​the plates is 1 cm2,
The field strength in the gap between them is 300 kV / m. Determine the surface charge density at
Plates, capacitance and energy of the capacitor.

PROBLEM 2.36
Internal resistance of the battery is 1 Ohm. With a current strength of 2 A, its efficiency is 0.8. Identify
Electromotive force of the battery.

PROBLEM 2.46
Two circular turns with a current lie in one plane and have a common center. The radius of the great turn is 12 cm,
Less than 8 cm. The field strength in the center of the turns is 50 A / m, if the currents flow in one direction,
And zero if in the opposite. Determine the strength of currents flowing through circular turns.

PROBLEM 2.56
The moment of the proton pulse in a homogeneous magnetic field of intensity 20 kA / m is 6.6 • 10-23 kg •
M2 / s. Find the kinetic energy of a proton if it moves perpendicular to the lines of the magnetic
Field induction.

Task 2.66
The circuit consists of a solenoid and a current source. A solenoid without a core 15 cm long and 4 cm in diameter
It has a dense winding of two layers of copper wire with a diameter of 0.2 mm. A 1 A current flows through the solenoid.
Determine the EMF of self-induction in the solenoid at that time after it is disconnected from the source
Current, when the current was reduced by half. Resistance of the current source and supply wires
Neglected.

Task 2.76
Under the action of a homogeneous magnetic field perpendicular to the lines of induction,
Move a rectilinear conductor with a mass of 2 g, along which the current flows 10 A. Which magnetic flux
Will cross this conductor by the time when its speed becomes 31.6 m / s?

Feedback

0
Period
1 month 3 months 12 months
0 0 0
0 0 0
Seller will give you a gift certificate in the amount of 0.04 $ for a positive review.
In order to counter copyright infringement and property rights, we ask you to immediately inform us at support@plati.market the fact of such violations and to provide us with reliable information confirming your copyrights or rights of ownership. Email must contain your contact information (name, phone number, etc.)

This website uses cookies to provide a more effective user experience. See our Cookie policy for details.